7 research outputs found

    A Digital Manufacturing Process For Three-Dimensional Electronics

    Get PDF
    Additive manufacturing (AM) offers the ability to produce devices with a degree of three-dimensional complexity and mass customisation previously unachievable with subtractive and formative approaches. These benefits have not transitioned into the production of commercial electronics that still rely on planar, template-driven manufacturing, which prevents them from being tailored to the end user or exploiting conformal circuitry for miniaturisation. Research into the AM fabrication of 3D electronics has been demonstrated; however, because of material restrictions, the durability and electrical conductivity of such devices was often limited. This thesis presents a novel manufacturing approach that hybridises the AM of polyetherimide (PEI) with chemical modification and selective light-based synthesis of silver nanoparticles to produce 3D electronic systems. The resulting nanoparticles act as a seed site for the electroless deposition of copper. The use of high-performance materials for both the conductive and dielectric elements created devices with the performance required for real-world applications. For printing PEI, a low-cost fused filament fabrication (FFF); also known as fused deposition modelling (FDM), printer with a unique inverted design was developed. The orientation of the printer traps hot air within a heated build environment that is open on its underside allowing the print head to deposit the polymer while keeping the sensitive components outside. The maximum achievable temperature was 120 °C and was found to reduce the degree of warping and the ultimate tensile strength of printed parts. The dimensional accuracy was, on average, within 0.05 mm of a benchmark printer and fine control over the layer thickness led to the discovery of flexible substrates that can be directly integrated into rigid parts. Chemical modification of the printed PEI was used to embed ionic silver into the polymer chain, sensitising it to patterning with a 405 nm laser. The rig used for patterning was a re-purposed vat-photopolymerisation printer that uses a galvanometer to guide the beam that is focused to a spot size of 155 µm at the focal plane. The positioning of the laser spot was controlled with an open-sourced version of the printers slicing software. The optimal laser patterning parameters were experimentally validated and a link between area-related energy density and the quality of the copper deposition was found. In tests where samples were exposed to more than 2.55 J/cm^2, degradation of the polymer was experienced which produced blistering and delamination of the copper. Less than 2.34 J/cm^2 also had negative effect and resulted in incomplete coverage of the patterned area. The minimum feature resolution produced by the patterning setup was 301 µm; however, tests with a photomask demonstrated features an order of magnitude smaller. The non-contact approach was also used to produce conformal patterns over sloped and curved surfaces. Characterisation of the copper deposits found an average thickness of 559 nm and a conductivity of 3.81 × 107 S/m. Tape peel and bend fatigue testing showed that the copper was ductile and adhered well to the PEI, with flexible electronic samples demonstrating over 50,000 cycles at a minimum bend radius of 6.59 mm without failure. Additionally, the PEI and copper combination was shown to survive a solder reflow with peak temperatures of 249°C. Using a robotic pick and place system a test board was automatically populated with surface mount components as small as 0201 resistors which were affixed using high-temperature, Type-V Tin-Silver-Copper solder paste. Finally, to prove the process a range of functional demonstrators were built and evaluated. These included a functional timer circuit, inductive wireless power coils compatible with two existing standards, a cylindrical RF antenna capable of operating at several frequencies below 10 GHz, flexible positional sensors, and multi-mode shape memory alloy actuators

    Inertial Tracking System for Monitoring Dual Mobility Hip Implants In Vitro

    No full text
    Dual mobility (DM) implants are being increasingly used for total hip arthroplasties due to the additional range of motion and joint stability they afford over more traditional implant types. Currently, there are no reported methods for monitoring their motions under realistic operating conditions while in vitro and, therefore, it is challenging to predict how they will function under clinically relevant conditions and what failure modes may exist. This study reports the development, calibration, and validation of a novel inertial tracking system that directly mounts to the mobile liner of DM implants. The tracker was custom built and based on a miniaturized, off-the-shelf inertial measurement unit (IMU) and employed a gradient-decent sensor fusion algorithm for amalgamating nine degree-of-freedom IMU readings into three-axis orientation estimates. Additionally, a novel approach to magnetic interference mitigation using a fixed solenoid and magnetic field simulation was evaluated. The system produced orientation measurements to within 1.0° of the true value under ideal conditions and 3.9° with a negligible drift while in vitro, submerged in lubricant, and without a line of sight

    The Winchcombe meteorite, a unique and pristine witness from the outer solar system.

    Get PDF
    Direct links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid. Recovered only hours after falling, the composition of the Winchcombe meteorite is largely unmodified by the terrestrial environment. It contains abundant hydrated silicates formed during fluid-rock reactions, and carbon- and nitrogen-bearing organic matter including soluble protein amino acids. The near-pristine hydrogen isotopic composition of the Winchcombe meteorite is comparable to the terrestrial hydrosphere, providing further evidence that volatile-rich carbonaceous asteroids played an important role in the origin of Earth's water

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    No full text
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic
    corecore